DAQ and Thresholds

Leon Mualem
University of Minnesota

Data Rates

- Driven by Cosmic Ray induced Muons
- ~250kHz, leading to ~400Hz/channel or 12kHz/module rate
 - 120kB/module/s
 - But 23,808*120kB/s=~3GB/s

Noise Data Rates

- Determined by noise level and threshold
- Noise \sim Gaussian σ =2.5pe
- Data output 10 bytes/hit above threshold
- 10⁶ time slices per second
- Maximum data rate— 32chan*10bytes*8bits/byte*10⁶=2.5Gbps/box
- 23,808*2.5Gbps= ~ 60 TB/s

Noise Rate per box vs. Threshold

Noise Data Rate vs. Threshold

Noise in Events

- Largest events are quasielastic v_{μ} cc events.
- Assume ~2m in each view, 50 strips
- ~100 planes/GeV, ~300 planes long
- ~15000 strips in an event
- Use the noise rate and the number of strips to calculate the noise contamination of an event.
- Contamination of events ~10 noise hits per event at 8pe, ~1 hit/event at 9pe.
 - 10 hits at 8pe ≈<30MeV
- DAQ rate limit (ethernet) limits threshold to ~8pe minimum

Noise per event vs. Threshold

But Wait, There's More

- There is a non-Gaussian tail associated with the APD system.
- Assuming that this noise will be present, it will limit the threshold.

Threshold limits in reality (M=100)

At gain of 100 the threshold is ~15pe to keep rate limited to 1/4 of muon rate

Conclusions

- Noise is not entirely described by a Gaussian.
- The non-Gaussian tail limits the threshold in reality to about 15pe for a noise rate 4X less than the muon rate.
- Threshold does not need to be high to limit noise in events, solely to hold down rate of writing noise to tape